Skip to main content

Insect Dorsal Ocelli: A Brief Overview

  • Chapter
  • First Online:
Distributed Vision

Part of the book series: Springer Series in Vision Research ((SSVR))

Abstract

The dorsal ocelli of adult insects are simple eyes that can complement or act independently from the compound eye visual system. While notably absent in some species, they are present across the insect phylogeny but can vary dramatically in their anatomy, neuronal organisation, physiology and function. In some species, they appear to only detect changes in light intensity, while in others, they modulate compound eye responses, mediate orientation using polarised light or function as a zeitgeber in the timing of daily activity. Their variability across, and even within, species suggests that insect dorsal ocelli are relatively malleable organs, and there is still much that remains to be learned about the ecological and phylogenetic factors that have shaped them. In this chapter, we provide a brief overview of the exciting and remarkable findings of the past century of research into the dorsal ocelli of insects. Our aim is to inspire future studies into these dynamic sensory organs, not only to improve our understanding of this enigmatic sensory system but also to bring deeper insights into the fascinating world of insect sensory biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berry R, Stange G, Olberg R, van Kleef J (2006) The mapping of visual space by identified large second-order neurons in the dragonfly median ocellus. J Comp Physiol A 192:1105–1123

    Article  Google Scholar 

  • Berry R, Kleef J, Stange G (2007a) The mapping of visual space by dragonfly lateral ocelli. J Comp Physiol A 193:495–513

    Article  Google Scholar 

  • Berry RP, Warrant EJ, Stange G (2007b) Form vision in the insect dorsal ocelli: an anatomical and optical analysis of the locust ocelli. Vis Res 47:1382–1393

    Article  PubMed  Google Scholar 

  • Berry RP, Wcislo WT, Warrant EJ (2011) Ocellar adaptations for dim light vision in a nocturnal bee. J Exp Biol 214:1283–1293

    Article  PubMed  Google Scholar 

  • Buschbeck EK, Friedrich M (2008) Evolution of insect eyes: tales of ancient heritage, deconstruction, reconstruction, remodeling, and recycling. Evol Edu Outreach 1:448–462

    Article  Google Scholar 

  • Cassier P (1962) Role des ocelles frontaux chez Locusta migratoria migratorioides (R. et F.). Insects Sociaux 9:213–230

    Article  Google Scholar 

  • Chappell RL, DeVoe RD (1975) Action spectra and chromatic mechanisms of cells in the median ocelli of dragonflies. J Gen Physiol 65:399–419

    Article  CAS  PubMed  Google Scholar 

  • Chappell RL, Goodman LJ, Kirkham JB (1978) Lateral ocellar nerve projections in the dragonfly brain. Cell Tissue Res 190:99–114

    Article  CAS  PubMed  Google Scholar 

  • Cornwell PB (1955) The functions of the ocelli of Calliphora (Diptera) and Locusta (Orthoptera). J Exp Biol 32:217–237

    Article  Google Scholar 

  • Dow MA, Eaton JL (1976) Fine structure of the ocellus of the cabbage looper moth (Trichoplusia ni). Cell Tissue Res 171:523–533

    Article  CAS  PubMed  Google Scholar 

  • Eaton JL, Tignor KR, Holtzman GI (1983) Role of moth ocelli in timing flight initiation at dusk. Physiol Entomol 8:371–375

    Article  Google Scholar 

  • Fent K (1986) Polarized skylight orientation in the desert ant Cataglyphis. J Comp Physiol A 158:145–150

    Article  Google Scholar 

  • Fent K, Wehner R (1985) Oceili: a celestial compass in the desert ant Cataglyphis. Science 228:192–194

    Article  CAS  PubMed  Google Scholar 

  • Garcia JE, Hung Y-S, Greentree AD, Rosa MGP, Endler JA, Dyer AG (2017) Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli. PNAS 114:7713–7718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiser FX, Labhart T (1982) Electrophysiological investigation on theocellar retina of the honeybee (Apis mellifera). Verh Dtsch Zool Ges 75:307

    Google Scholar 

  • Goldsmith TH (1960) The nature of the retinal action potential, and the spectral sensitivities of ultraviolet and green receptor systems of the compound eye of the worker honeybee. J Gen Physiol 43:775–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsmith TH, Ruck PR (1958) The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees; an electrophysiological study. J Gen Physiol 41:1171–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman LJ (1965) The role of certain optomotor reactions in regulating stability in the rolling plane during flight in the desert locust Schistocera gregaria. J Exp Biol 42:382–407

    Article  Google Scholar 

  • Goodman LJ (1968) Interaction between ocellar and compound eye visual inputs in Schistocerca gregoria. In: 13th international congress of entomology. Moscow

    Google Scholar 

  • Goodman LJ (1970) The structure and function of the insect dorsal ocellus. In: Beament JWL, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology, vol 7. Academic, Cambridge, MA

    Google Scholar 

  • Goodman LJ (1981) Organisation and physiology of the insect dorsal ocellar system. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin

    Google Scholar 

  • Grob R, Tritscher C, Grubel K, Stigloher C, Groh C, Fleischmann PN, Rossler W (2020) Johnston’s organ and its central projections in Cataglyphis desert ants. J Comp Neurol 529:2138–2155

    Article  PubMed  Google Scholar 

  • Hatch MH (1926) Notes on the morphology of the eyes of Coleoptera. J N Y Entomol Soc 34:343–349

    Google Scholar 

  • Honkanen A, Saari P, Takalo J, Heimonen K, Weckström M (2018) The role of ocelli in cockroach optomotor performance. J Comp Physiol A 204:231–243

    Article  Google Scholar 

  • Hung YS, Ibbotson MR (2014) Ocellar structure and neural innervation in the honeybee. Front Neuroanat 8:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung YS, van Kleef JP, Stange G, Ibbotson MR (2013) Spectral inputs and ocellar contributions to a pitch-sensitive descending neuron in the honeybee. J Neurophysiol 109:1202–1213

    Article  PubMed  Google Scholar 

  • Insausti TC, Lazzari CR (2000) An ocellar "pupil" that does not change with light intensity, but with the insect age in Triatoma infestans. Mem Inst Oswaldo Cruz 95:743–746

    Article  CAS  PubMed  Google Scholar 

  • Insausti TC, Lazzari CR (2002) The fine structure of the ocelli of Triatoma infestans (Hemiptera: Reduviidae). Tissue Cell 34:437–449

    Article  CAS  PubMed  Google Scholar 

  • Kalmus H (1945) Correlations between flight and vision, and particularly between wings and ocelli, in insects. Proc R Entmol Soc Lond 20:84–96

    Google Scholar 

  • Kastberger G (1990) The ocelli control the flight course in honeybees. Physiol Entomol 15:337–346

    Article  Google Scholar 

  • Kastberger G, Kranner G (2000) Visualization of multiple influences on ocellar flight control in giant honeybees with the data-mining tool Viscovery SOMine. Behav Res Methods Instrum Comput 32:157–168

    Article  CAS  Google Scholar 

  • Kastberger G, Schuhmann K (1992) Ocellar occlusion effect on the flight behaviour of homing honeybees. J Insect Physiol 39:589–600

    Article  Google Scholar 

  • Kelber A, Jonsson F, Wallen R, Warrant E, Kornfeldt T, Baird E (2011) Hornets can fly at night without obvious adaptations of eyes and ocelli. PLoS One 6:e21892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerfoot WB (1967) Correlation between ocellar size and foraging activities of bees (Hymenoptera Apoidea). Am Nat 101:65–70

    Article  Google Scholar 

  • Lazzari CR, Reiseman CE, Insausti TC (1998) The role of the ocelli in the phototactic behaviour of the haematophagous bug Triatoma infestans. J Insect Physiol 44:1159–1162

    Article  CAS  PubMed  Google Scholar 

  • Mizunami M (1994) Information processing in the insect ocellar system: comparative approaches to the evolution of visual processing and neural circuits. In: Evans PD (ed) Advances in insect physiology, vol 25. Academic, Cambridge, MA

    Google Scholar 

  • Mizunami M (1995) Functional diversity of neural organization in insect ocellar systems. Vis Res 35:443–452

    Article  CAS  PubMed  Google Scholar 

  • Mobbs PG (1985) Brain structure. In: Kerkut GA (ed) Comprehensive insect physiology, biochemistry and pharmacology, vol 5. Pergamon Press, Oxford

    Google Scholar 

  • Mote MI, Wehner R (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol A 137:63–71

    Article  Google Scholar 

  • Narendra A, Ribi WA (2017) Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants. J Exp Biol 220:4383–4390

    Article  PubMed  Google Scholar 

  • Narendra A, Ramirez-Esquivel F, Ribi WA (2016) Compound eye and ocellar structure for walking and flying modes of locomotion in the Australian ant, Camponotus consobrinus. Sci Rep 6:22331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa Y, Ribi W, Zeil J, Hemmi JM (2017) Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors. J Exp Biol 220:1701–1708

    PubMed  Google Scholar 

  • Pan KC, Goodman LJ (1977) Ocellar projections within the central nervous system of the worker honey bee, Apis mellifera. Cell Tissue Res 176:505–527

    Article  CAS  PubMed  Google Scholar 

  • Parsons MM, Krapp HG, Laughlin SB (2006) A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. J Exp Biol 209:4464–4474

    Article  PubMed  Google Scholar 

  • Parsons MM, Krapp HG, Laughlin SB (2010) Sensor fusion in identified visual interneurons. Curr Biol 20:624–628

    Article  CAS  PubMed  Google Scholar 

  • Penmetcha B, Ogawa Y, Ribi WA, Narendra A (2019) Ocellar structure of African and Australian desert ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 205:699–706

    Article  PubMed  Google Scholar 

  • Rence BG, Lisy MT, Garves BR, Quinlan BJ (1988) The role of ocelli in circadian singing rhythms of crickets. Physiol Entomol 13:201–212

    Article  Google Scholar 

  • Ribi WA, Zeil J (2015) The visual system of the Australian ‘Redeye’ cicada (Psaltoda moerens). Arthropod Struct Dev 44:574–586

    Article  PubMed  Google Scholar 

  • Ribi W, Zeil J (2018) Diversity and common themes in the organization of ocelli in Hymenoptera, Odonata and Diptera. J Comp Physiol A 204:505–517

    Article  Google Scholar 

  • Ribi W, Warrant EJ, Zeil J (2011) The organization of honeybee ocelli: regional specializations and rhabdom arrangements. Arthropod Struct Dev 40:509–520

    Article  PubMed  Google Scholar 

  • Sabat D, Priyadarsini S, Mishra M (2016) Understanding the structural and developmental aspect of simple eye of Drosophila: the ocelli. J Cell Signal 1:109

    Google Scholar 

  • Schricker B (1965) Die orientierung der honigbiene in der dämmerung. Zugleich ein beitrag zur frage der ocellen funktion bei bienen zeitschrift fur vergleichende. Physiologie 49:420–458

    Google Scholar 

  • Schuppe H, Hengstenberg R (1993) Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response. J Comp Physiol A 173:143–149

    Article  Google Scholar 

  • Schwarz S, Albert L, Wystrach A, Cheng K (2011a) Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. J Exp Biol 214:901–906

    Article  PubMed  Google Scholar 

  • Schwarz S, Wystrach A, Cheng K (2011b) A new navigational mechanism mediated by ant ocelli. Biol Lett 7:856–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprint MM, Eaton JL (1987) Flight behavior of normal and anocellate cabbage loopers (Lepidoptera: Noctuidae). Ann Entomol Soc Am 80:468–471

    Article  Google Scholar 

  • Stange G (1981) The ocellar component of flight equilibrium control in dragonflies. J Comp Physiol A 141:335–347

    Article  Google Scholar 

  • Stange G, Howard J (1979) An ocellar dorsal light response in a dragonfly. J Exp Biol 83:351–355

    Article  Google Scholar 

  • Stange G, Stowe S, Chahl J, Massaro A (2002) Anisotropic imaging in the dragonfly median ocellus: a matched filter for horizon detection. J Comp Physiol A 188:455–467

    Article  CAS  Google Scholar 

  • Stavenga DG, Bernard GD, Chappell RL, Wilson M (1979) Insect pupil mechanisms. J Comp Physiol A 129:199–205

    Article  Google Scholar 

  • Taylor CP (1981a) Contribution of compound eyes and ocelli to steering of locusts in flight: I. Behavioural analysis. J Exp Biol 93:1–18

    Article  Google Scholar 

  • Taylor CP (1981b) Contribution of compound eyes and ocelli to steering of locusts in flight: II. Timing changes in flight motor units. J Exp Biol 93:19–31

    Article  Google Scholar 

  • Taylor GJ et al (2016) The dual function of oprchid bee ocelli as revealed by x-ray microtomography. Curr Biol 26:1319–1324

    Article  CAS  PubMed  Google Scholar 

  • Toh Y, Sagara H, Iwasaki M (1983) Ocellar system of the insect: comparison of dorsal ocellus and lateral ocellus. Vis Res 23:313–323

    Article  CAS  PubMed  Google Scholar 

  • van Kleef JP, Massy T, Maharbiz MM (2013) An ocellar-based flight control system for flying insects. IEEE EMBC Short papers 2664

    Google Scholar 

  • Warrant EJ, Kelber A, Wallen R, Wcislo WT (2006) Ocellar optics in nocturnal and diurnal bees and wasps. Arthropod Struct Dev 35:293–305

    Article  PubMed  Google Scholar 

  • Wellington WG (1953) Motor responses evoked by the dorsal ocelli of Sarcophaga aldrichi Parker and the orientation of the fly to plane polarized light. Nature 172:1177–1179

    Article  CAS  PubMed  Google Scholar 

  • Wellington WG (1974) Bumblebee ocelli and navigation at dusk. Science 183:550–551

    Article  CAS  PubMed  Google Scholar 

  • Wilby D, Aarts T, Tichit P, Bodey A, Rau C, Taylor G, Baird E (2019) Using micro-CT techniques to explore the role of sex and hair in the functional morphology of bumblebee (Bombus terrestris) ocelli. Vis Res 158:100–108

    Article  PubMed  Google Scholar 

  • Wilson M (1975) Autonomous pigment movement in the radial pupil of locust ocelli. Nature 258:603–604

    Article  CAS  PubMed  Google Scholar 

  • Wilson M (1978) The functional organisation of locust ocelli. J Comp Physiol A 124:297–316

    Article  Google Scholar 

  • Wunderer H, Jan De Kramer J (1989) Dorsal ocelli and light-induced diurnal activity patterns in the arctiid moth Creatonotos transiens. J Insect Physiol 35:87–95

    Article  Google Scholar 

  • Zeil J, Ribi W, Narendra A (2014) Polarisation vision in ants, bees and wasps. In: Horváth G (ed) Polarized light and polarization vision in animal sciences, Springer series in vision research, vol 2. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Baird .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baird, E., Yilmaz, A. (2023). Insect Dorsal Ocelli: A Brief Overview. In: Buschbeck, E., Bok, M. (eds) Distributed Vision. Springer Series in Vision Research. Springer, Cham. https://doi.org/10.1007/978-3-031-23216-9_8

Download citation

Publish with us

Policies and ethics